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Communication: Simple liquids’ high-density viscosity
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This paper argues that the viscosity of simple fluids at densities above that of the triple point is a
specific function of temperature relative to the freezing temperature at the density in question. The
proposed viscosity expression, which is arrived at in part by reference to the isomorph theory of
systems with hidden scale invariance, describes computer simulations of the Lennard-Jones system
as well as argon and methane experimental data and simulation results for an effective-pair-potential
model of liquid sodium. Published by AIP Publishing. https://doi.org/10.1063/1.5022058

The factors that affect the steady-state shear viscosity, η,
of a fluid have been the subject of much investigation, yet no
first-principles expression for the state-point dependence of η
exists that allows for a straightforward calculation of η from
the system’s Hamiltonian. This means that one cannot easily
calculate the viscosity’s dependence on temperature T, particle
number density ρ ≡ N /V, and pressure p for dense fluids. The
literature is centered around semi-empirical expressions based
on parameters such as the free volume that are not uniquely
defined for real atoms and molecules, and viscosity data have
typically been fitted to empirical polynomial expressions not
obviously linked to the underlying physics.1–5 The density
and temperature ranges where they are applicable are also
limited.

A significant early development in providing an accurate
expression for η is Enskog’s expression for hard spheres,6,7

η∗ ≡
η

ηHS
0

=
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2. (1)

Here σ is the sphere radius and B2 = 2πσ3/3 is the second
virial coefficient. The viscosity prefactor ηHS

0 is given by
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The mass of the sphere is m and kB is the Boltzmann con-
stant. The value of the radial distribution function at contact
of the hard spheres is given by g(σ) = (Z � 1)/(B2ρ) in which
Z = p/ρkBT is the so-called compressibility factor.8 At liquid-
like densities, the last term on the right-hand side of Eq. (1)
dominates and is, apart from a numerical factor, the same
as derived by Longuet-Higgins and Pople9 based on simple
kinetic arguments.

The dimensionless viscosity η∗ in Eq. (1) involves the
effective molecule radius σ. This concept appears also in the
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expression for the fluidity (1/η) of Dymond10 for high-density
fluids in which the fluidity is taken to be linear in the volume
per particle, v . A linear dependence on v was also considered
by Hildebrand11 and by van Loef,12,13 who showed that it fits
well to the viscosity of dense fluids composed of a wide variety
of molecules. The molecular diameter is typically expressed
in terms of the close-packed volume per particle of the crystal.
This prescription has been found to reproduce well also the
fluidity of model inverse-power fluids.14

An alternative definition of the characteristic length scale
is ρ�1/3. This has been used in scaling onto a single curve
the viscosity trends for high-density fluids15 and hydrocarbon
fluids.16,17 Andrade in the 1930s proposed an early applica-
tion of this type of viscosity scaling, for molten metals,18–20

which lead to the “macroscopically” reduced (dimensionless)
viscosity,

η̃ ≡ ρ−2/3(mkBT )−1/2η. (3)

Even though σ and ρ�1/3 are numerically close for dense
liquids, this substitution is a significant conceptual leap. It
makes the transition from molecular-potential focused equa-
tions for transport coefficients, which trace their origin to the
kinetic theory of gases and the hard-sphere model, to ones
based on macroscopic variables independent of molecular
detail and characteristics. This treatment is an important step
towards including transport coefficients within the category of
thermodynamic state functions.21

The idea that viscosity and thermodynamic properties are
subject to the same treatment is implicit in a number of pre-
vious studies.21–23 Hoover et al.24 showed theoretically that
the density and temperature properties of model fluids formed
by the inverse power-law pair potential, v(r) ∝ r�n, collapse
onto a single curve where ρn/3/T is constant. Alba-Simionesco,
Roland, and their respective co-workers more recently showed
that the experimental reduced dynamical properties of many
glass-forming molecular liquids can be collapsed in the same
way, treating the exponent n as a fitting parameter.25–27 The
recent body of work on isomorph scaling has confirmed this
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assumption and provided a theoretical basis.28–30 With iso-
morphs defined as the lines of constant excess entropy in the
thermodynamic phase diagram,28,31 the reduced viscosity η̃ is
constant along an isomorph because the reduced-unit dynam-
ics is. This fact is not reliant on a particular form of the potential
as long as the system has strong virial potential-energy cor-
relations at the state points in question.28 In particular, it
is not restricted to inverse-power potentials or even to pair
potentials, and several molecular systems have been shown to
conform to the isomorph theory in computer simulations32,33

and experiments.34–36

Not all systems have isomorphs, though. While most met-
als and van der Waals bonded liquids are believed to have
isomorphs in the condensed-phase part of their phase dia-
gram, systems with significant directional bonding like cova-
lently or hydrogen-bonded systems are not expected to have
isomorphs.32,37,38 The Lennard-Jones (LJ) liquid belongs to
the former class of the so-called Roskilde (R)-simple sys-
tems,31,39–43 which includes most systems with more or less
spherical interaction symmetry, the property that traditionally
defines a “simple” system.8 We use below the isomorph theo-
retical framework as a guide to arrive at an expression for how
simple liquids’ viscosity varies throughout the high-density
part of the thermodynamic phase diagram. A novel viscosity
expression is suggested with reference to the LJ system and
shown to describe well experimental data for methane and
argon as well as simulation data for an effective pair-potential
model of liquid sodium.

R-simple systems are characterized by a potential-energy
function U(R) obeying the following scaling condition31 (in
which R is the 3N coordinates of the N particles and λ > 0 is
a scaling factor):

U(Ra) < U(Rb) ⇒ U(λRa) < U(λRb). (4)

Equation (4) is strictly obeyed only for an Euler-homogeneous
potential plus a constant, but it is a good approximation for
several realistic atomic and molecular models.31,44 For such
systems, the scaling property is rarely obvious from the mathe-
matical expression for U(R) for which reason the term “hidden
scale invariance” is sometimes used.28,33,45–49

The R-simple region of a given system is identified in
computer simulations as the state points characterized by
strong virial potential-energy correlations in constant-volume
canonical-ensemble fluctuations.28,50,51 For the LJ liquid, our
simulations have shown that the Pearson correlation coefficient
obeys R > 0.94 at all state points with density and temperature
higher than those of the liquid at the triple point. Whenever
Eq. (4) applies, the isomorphs are to a good approximation

invariance curves for both structure and dynamics28,31 if quan-
tities have been made dimensionless using the “macroscopic”
unit system with distance measured in units of ρ�1/3, energy
in units of kBT, and time in units of (m/kBT )1/2ρ−1/3.28

In the simplest version of the isomorph theory,28,52 a func-
tion of density h(ρ) exists for any R-simple system such that
its isomorphs are given47,52 by

h(ρ)
T
= Const. (5)

For systems in three dimensions with pair potentials of the form
v(r) =

∑
nvnr�n, the function h(ρ) has one term for each inverse

power-law term, h(ρ) =
∑

nCnρ
n/3.52 For the LJ pair potential

vLJ(r) = 4ε
[
(r/σ)−12 − (r/σ)−6

]
, one has if γ0 is the so-called

density-scaling exponent determined from a simulation at a
single state point with density ρ0
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Because η̃ is isomorph invariant, Eq. (5) implies that η̃ is
a function of h(ρ)/T. If the temperature variation along a
reference isomorph as a function of density is denoted by
T0(ρ), Eq. (5) shows that h(ρ) ∝ T0(ρ). Thus one can write
η̃(ρ, T ) = F(T0(ρ)/T ).

The freezing line, which marks the limit between liquid
and solid-liquid coexistence regions in the density-temperature
phase diagram, defines a temperature function TF(ρ) in which
ρ is the liquid density. The freezing line is an approxi-
mate liquid-state isomorph,28,53,54 implying that the reference
isomorph function T0(ρ) may be taken to be TF(ρ),30 i.e.,

η̃(ρ, T ) = F (TF(ρ)/T ) . (7)

Rosenfeld applied this temperature scaling for the single-
particle diffusion constant and the viscosity of the Yukawa
system,55 which is now known to be R-simple.49 The func-
tion F in Eq. (7) is a priori system dependent, but the data
presented below interestingly suggest that the same functional
form applies for all simple liquids.

Simulations were carried out using Roskilde University
Molecular Dynamics running on graphics processing units58

(details are given in the supplementary material). At each state
point in Fig. 1(a), a SLLOD simulation was run to evaluate the
viscosity. Figure 1(b) shows viscosity data for the LJ liquid at
the state points given in Fig. 1(a). Upon heating at constant
density, the viscosity initially decreases and then increases.
The existence of viscosity minima along isochores is well
known.59

FIG. 1. Computer simulations of the Lennard-Jones (LJ)
fluid at moderate and high densities relative to the triple
point liquid density, which is 0.84 in the LJ units used
here. (a) shows the state points simulated. The full curve
is the freezing line.56 (b) shows the viscosity calculated
from SLLOD simulations57 in whichη is identified as the
zero shear-rate limit of the shear-rate dependent viscosity
(see the supplementary material). The full curves are the
predictions of Eq. (10) (see below), and the dashed curve
is the freezing line, which is characterized by the reduced
viscosity η̃F = 5.2.
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FIG. 2. The reduced viscosity η̃ of the LJ liquid. (a) shows the logarithm of η̃ as a function of freezing temperature over temperature for the data of Fig. 1(b).
The approximately linear dependence observed close to the freezing line (dotted line) is consistent with Kaptay’s expression, Eq. (9),60 but there are systematic
deviations from this at high temperatures. The barely visible green line represents Eq. (10), which is also given in (b) and (c). (b) tests Eq. (10) in a plot in which
the line has slope �1/2 and η̃0 is a free parameter. The data follow this line, except at the highest temperatures where the plot is very sensitive to the exact choice
of η̃0 (see the supplementary material). (c) Direct test of Eq. (10). The minor high-temperature deviations observed in (b) are not visible because the relevant
reduced viscosities are close to the high-temperature plateau value η̃0.

In order to validate Eq. (7) we proceed to identify an
expression for the LJ system’s freezing temperature as a func-
tion of density. A good overall representation of the freezing
line is30 (with density given in LJ units)

TF(ρ) = 2.27ρ4 − 0.80ρ2. (8)

An expression of this form was used by Rosenfeld in
197661 and more recently by Khrapak and others.62,63

Since the freezing line is an approximate isomorph, for
the LJ system the functional form Eq. (8) follows from
Eq. (6).30

Figure 2(a) plots the reduced viscosity of the LJ sys-
tem as a function of TF(ρ)/T using Eq. (8) for TF(ρ).
There is excellent collapse. Close to TF we confirm the
linear dependence of ln η̃ on TF(ρ)/T predicted by Kaptay’s

liquid-metal constant activation energy generalization of the
Andrade equation60 (dotted straight line),

η̃ = η̃0 exp(CTF(ρ)/T ). (9)

Systematic deviations from this are seen moving away from
the freezing line, however.

Figure 2(b) investigates the functional form of F in Eq. (7)
by plotting the logarithm of the reduced viscosity in a log-
log plot with η̃0 as a free parameter. Care must be exer-
cised when subjecting data to two logarithms, but keeping
this in mind the figure shows that for η̃0 = 0.41 most data
collapse onto a line with slope �1/2. This means that the
LJ system’s viscosity is well represented by the following
expression:

FIG. 3. Tests of the viscosity equation Eq. (10) against experimental data for argon64,65 and methane66–69 (upper and lower panels). (a) shows the state points
at which argon’s viscosity was measured. (b) shows argon’s reduced viscosity as a function of T /TF (ρ) in which the full curve is Eq. (10). The viscosity is
predicted correctly within 10% as indicated by the dotted lines. (c) shows argon’s non-reduced viscosity as a function of density along different isotherms. The
full curves are the predictions. (d) shows the state points at which methane’s viscosity was measured. (e) shows methane’s reduced viscosity as a function of
T /TF (ρ) in which the full curve is the prediction of Eq. (10). The viscosity is predicted correctly within 10% as indicated by the dotted lines. (f) shows methane’s
non-reduced viscosity as a function of density along different isotherms. The full curves are the predictions.
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FIG. 4. Test of Eq. (10) for computer
simulations of liquid sodium.70 (a)
shows the state points at which the vis-
cosity was calculated. Reprinted with
permission from N. Meyer, H. Xu, and
J.-F. Wax, Phys. Rev. B 93, 214203
(2016). Copyright 2016 American Phys-
ical Society. (b) shows the reduced vis-
cosity data as a function of T /TF (ρ) in
which the full curve is the prediction
of Eq. (10). The dotted lines mark the
viscosity ±10%.

η̃(ρ, T ) = η̃0 exp

B

(
TF(ρ)

T

)1/2
. (10)

To validate this directly, Fig. 2(c) plots the reduced viscos-
ity data as a function of T /TF(ρ) with Eq. (10) as the dashed
green line. The full curves of Fig. 1(b) are the correspond-
ing non-reduced viscosity predictions. Using instead of 1/2
the exponent 0.455 gives a worse fit; see the supplementary
material.

Equation (10) involves just two dimensionless parameters,
η̃0 and B. The reduced viscosity at freezing η̃F determines B
via

B = ln (η̃F/η̃0) . (11)

The two free parameters of Eq. (10) may be determined from
one viscosity measurement at freezing and one measurement
away from the freezing line. For the LJ system, we find
η̃F = 5.2 and η̃0 = 0.41, corresponding to B = 2.54.

Figure 3 reproduces data for methane and argon in which
Figs. 3(a) and 3(d) are density-temperature phase diagrams
showing the state points at which the viscosity was mea-
sured. Figures 3(b) and 3(e) compare the reduced viscosity data
with best fits to Eq. (10). In both cases, Eq. (10) reproduces
the data within 10% (marked by the dashed lines). Finally,
Figs. 3(c) and 3(f) compare the non-reduced viscosity data to
the prediction along a few isotherms.

Recently, Meyer et al. simulated liquid sodium mod-
eled by a density-dependent effective pair potential derived
from the Fiolhais model of electron-ion interaction with self-
consistent screening using a local field correction.70 As is clear
from Fig. 4, the reduced viscosity data of the sodium model
conform well to Eq. (10).

Based on a hard-sphere argument, Andrade in 1934
derived an expression for the viscosity of liquids at freezing,
which implied a constant reduced viscosity along the freez-
ing line identified by the Lindemann melting criterion.71 In
2005, Kaptay generalized this expression to η ∝m1/2T1/2V�2/3

exp(CTF /T ), which is Eq. (9) in non-reduced units.60 This
expression was shown to work well for 18 metals at ambient
pressure.60 Equation (10) is qualitatively different by having
(TF/T )1/2 instead of TF /T in the exponential. The new vis-
cosity equation represents data well in the region of the phase
diagram studied by Kaptay and others, as well as at much
higher temperatures.

In summary, Eq. (10) suggests a quasiuniversal viscos-
ity expression for simple liquids,22,44,72 which reduces the

number of independent experiments/simulations needed to
map out the viscosity as a function of state point in the
phase diagram. Just two measurements of viscosity can now
be used to predict its value throughout a fairly large liquid
region of the phase diagram. This has potential applications
in fields where the pressure can be very high, such as in
some lubrication applications and magma geology. Obviously
the chemical species there are more complicated than the
small molecules considered in the present study. Neverthe-
less, the scaling treatment verified here may apply for more
complex chemical systems and throw light on some impor-
tant outstanding fundamental questions such as what is the
viscosity of the Earth’s outer core and how it varies with
depth.73,74

The argument leading to Eq. (10) was based in part
on the isomorph theory which is, however, also consistent
with Kaptay’s expression Eq. (9). An important task for the
future is to justify the temperature square root needed to
fit data properly, which as far as we are aware is not yet
derivable from theory. Another important task is to check
Eq. (10) for more real liquids and computer-simulated simple
liquids.

See the supplementary material for details on the com-
puter simulations and comparisons of our findings to the vis-
cosity expressions of van Loef, Longuet, and Rosenfeld, as
well as showing that it is possible to use a reference isomorph
that is not the melting line.
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data of Ref. 70 available and are grateful to Vadim Brazhkin
and Kenneth Harris for helpful correspondence. This work was
supported by the VILLUM Foundation’s Grant Nos. VKR-
023455 and 16515 (Matter).
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